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Abstract - This paper proposes a method based

on the Dempster-Shafer evidence theory for the

detection of blotches in digitized archive film se-

quences. The detection scheme relies on the fusion

of two uncorrelated fast, no motion compensated,

spatio-temporal blotch detectors. The imprecision

and uncertainty of both detectors are modeled using

Dempster-Shafer evidence theory, which improves

the decision, by taking into account the ignorance

and the conflict between detectors. We found that

this combination scheme improves the global perfor-

mance, and compares favorably to the motion com-

pensated, complex and time consuming blotch detec-

tion methods, for real archive film sequences.

Keywords: Film restoration, spatio-temporal filtering,

Dempster-Shafer fusion.

1 Introduction

The last century has provided a large amount of au-
diovisual documents, which are endangered, because of
the smooth, but irreversible degradation of their sup-
port. The main challenge for the traditional stakehold-
ers is to achieve the migration to digital formats and
the long-term preservation of these digitized holdings
[1].

Digital restoration is a key step, because the in-
creasing need in image quality required by the new
digital broadcast formats (HDDVD, HDTV and HD
cinema). However, digital restoration seems to be the
bottle neck of the preservation process, because of the
high costs and low throughput, involving expensive
hardware and skilled operators. Digital restoration
has to deal with several (sometimes contradictory) con-
straints: improving the restoration quality in order to
deal with high-resolution images (HD, 2k or 4k), lower-
ing the costs, which are closely related to the automa-
tion of the process (operator costs), to the costs and the
evolvability of the hardware, and finally to the speed
of the restoration process. These constraints should
be fulfilled by the introduction of software solutions,
working on standard low-cost PCs, and by the research
of new, fast, adaptive, and high-level algorithms.

Film is the oldest and the most fragile moving pic-
ture media. Film impairments are related to the stor-
age conditions (moisture, vinegar syndrome, dye fad-
ing), to improper handling (scratches, dust, dirt), and
to poorly maintained equipment (scratches, unsteadi-
ness).

In this paper we focus on the detection of the most
frequent defects, which are dirt and sparkle. Dirt and
sparkles are impulsive (single frame) defects. Dirt can
be seen as opaque or semi-transparent clusters with
random size, shape and position, caused by dust and
dirt stuck on the film, while sparkle are white clus-
ters, caused by the local abrasions of film gelatin. Fig-
ure 1 illustrates some examples of opaque and semi-
transparent dirt extracted from 16mm archive film.

Figure 1: Examples of archive film blotches : (left)
examples of semi-transparent blotches on static back-
ground; (right) examples of opaque blotches on tex-
tured moving background.

In this paper, we propose a method based on the
Dempster-Shafer (DS) fusion framework for optimiz-
ing the combination of spatial and temporal informa-
tion. DS framework models both imprecision and un-
certainty of each detector, and combines them in order
to take the best decision given this partial informa-
tion. The fusion also provides a risk index, allowing a
variable degree of treatment.

The remainder of this paper is organized as follows.
Section 2 gives an overview of the previous blotch de-
tection methods, while Section 3 describes two blotch
detectors that we combine in Section 4. Section 5
shows experimental results, and conclusions are pre-
sented in Section 6.



2 Previous works

Dirt and sparkle detection often relies on the assump-
tion of smoothness of motion in the sequence, and on
temporal and/or spatial inconsistency of defects. Usu-
ally, the image is filtered in the temporal and/or spatial
domain, and the defects are detected as the thresh-
olded difference between the original frame and the
filtered one.

Temporal detection methods have been used early
in the problem of dirt concealment [2]. Basically, these
methods are based on the computation of the DFD,
which is the difference between two consecutive motion
compensated (MC) frames. A. Kokaram introduced
the spike detection index (SDIa) [3] which computes
the minimum between backward and forward DFD,
and SDIp that reduces the number of false alarms, by
introducing an additional constraint that requires the
signs of both DFDs to be identical before a blotch can
be detected. In a similar way, P. Schallauer [4] in-
troduced the constraint that the absolute differences
of previous and next MC frames have to be below a
threshold.

In spite of good global performances, these meth-
ods have high computational costs, and produce false
alarms when motion estimation fails, i.e. for so-called
“pathological motion” [5] (occlusions, uncovering, in-
termittent motion, erratic motion, motion blur, large
displacements, transparency).

Spatial filtering methods assume spatial inconsis-
tency of defects. Median filters have been extensively
used because of their ability to eliminate outliers while
preserving edges. A. Nieminen proposed [6] a multi-
level median filter (MMF), which was implemented as
the median of the outputs of several median filters with
different topologies. R. Hardie and C. Boncelet [7] in-
troduced the Lower-Upper-Middle (LUM) filter, which
output is assigned to the upper or to the lower local
median values computed on an upper and a lower in-
tervals defined by two parameters. O. Buisson [8] used
a top hat morphological filter, because of its ability to
detect specific patterns, such as dust and hair.

However, these spatial filters provide false alarms
on sharp and textured regions, i.e. when image spatial
patterns look like defects patterns, and fail to detect
blotches exceeding the filter size.

Spatio-temporal methods extend spatial filtering to
the temporal domain, often using motion compensated
(MC) frames. G. Arce [9] introduced a multi-stage
order statistic filter (MOS) as an extension of the
min/max MMF filter to three (non MC) frames. In the
same manner, B. Alp [10] presented the ML3D filter,
which uses median operations and provides, according
to [11], better impulse noise rejection than those pro-
posed by Arce. A. Kokaram [11] improved ML3D fil-
ter (ML3Dex) by using three MC frames. M. Nadenau
and S. Mitra [12] presented the rank order detector
(ROD), which compares the rank ordered differences
between the current pixel and six neighbors (from the
previous and next image) against three thresholds. P.
Van Roosmalen [13] simplified ROD (SROD) by using

a single threshold for the maximum distance between
the current pixel and the minimum or maximum of the
neighbors. Gangal [14] improved ROD performances
by using more robust motion estimation and extend-
ing ROD to five MC frames. O. Buisson [8] presented
a hybrid detector, based on the combination of SDIa
with a spatial morphological filter, while E. Decenciere
[15] extended the class of morphological area filters to
the spatio-temporal domain.

An original adaptive filter was recently presented
by M. Hamid [16]. A soft morphological filter (SMF)
works on three non MC images, and its size and
shape parameters are learned using a genetic algo-
rithm, supervised by both artificially corrupted and
uncorrupted sequences. This filter gives less false
alarms than LUM and ML3Dex for fast moving ob-
jects, but the learning step is very slow, and the filter
parameters should be adapted to each new sequence.

Probabilistic methods have also been proposed, us-
ing a Bayesian framework and Markovian models for
the detection of temporal discontinuities on MC frames
[17, 18, 19]. These methods perform well in real sit-
uations, but have a high computational cost, which
become intractable when neighborhood order exceeds
first or second order [17]. R. Bornard [17] extended
the MRF model to five MC frames, and introduced
an interpretation step (based on spatio-temporal re-
dundancy of false alarms), that reduced the number of
false alarms within pathological motion areas.

Spatio-temporal methods achieve better perfor-
mance than spatial or temporal methods alone. How-
ever, the computational load is higher, and often false
alarms due to “pathological motion” persist, which is
the consequence of a non optimal combination schema.

A better modeling of the combination of these de-
tectors should improve the quality of detection and
decrease the computational time. Temporal detection
should be used to leave the ambiguity between dirt
clusters and objects of a similar spatial structure, while
spatial detection should be used to confirm temporal
detections, or to replace these ones when motion esti-
mation fails.

3 Blotch Detectors

Two blotch detectors have been chosen, which provide
both redundant and complementary detections. It can
be assumed that these detectors are independent (in
the sense of belief function fusion) since one is working
in the temporal domain and the second one is working
in the spatial domain.

3.1 Temporal detector

In order to avoid the high computational cost of motion
estimation, we have chosen a simple, but fast temporal
detector, working on three non motion-compensated
frames. We use the principle of the Simplified Rank
Order Detector (SROD) [13], which flags a pixel in the
current frame as “blotched”, if its value is an outlier of
the distribution of grey levels of the neighboring pixels,



taken from the previous and the next frames (Figure
2).

Figure 2: Principle of SROD.

The “outlierness” of a pixel in the current image is
then computed as the difference between the minimum
of the distribution and the pixel value for a black out-
lier, or as the difference between the pixel value and
the maximum of the distribution, for a white outlier:

SROD(i) = min(pk)− z(i) if min(pk)− z(i) > 0,
z(i)−max(pk) if z(i)−max(pk) > 0,
0 sinon.

(1)

with k = {1, ..., N}, where N is the number of neigh-
bors, z(i) the value of the current pixel and pk the
value of a neighbor k.

This detector has one free parameter S, which is the
size of the windows in the previous and next images
(so N = 2 × S2). S should be larger than the dis-
placements between two consecutive images, but small
enough to avoid the loss of sensibility around edges.
Efficient computation of local min/max is achieved by
first computing min/max on lines, and thereafter on
columns.

This detector is able to deal with small motions,
but because of the lack of motion compensation fast
moving objects can provide false alarms (cf. Figure 3).

Figure 3: Examples of temporal detections of blotches.
Green boxes show examples of good detections, while
red boxes show examples of false alarms.

3.2 Spatial detector

In order to decrease the number of false alarms pro-
vided by the previous detector, we introduce a second
detector, acting in the spatial domain. As blotches are
often local extrema with sharp edges in the images, we
assume that they can be detected by a morphological
filter, using a structuring element with a shape close
to real blotch shapes.

Firstly, a top hat morphological filter using non flat
large square structuring element with a tunable pro-
file [8] has been implemented. It gives good results for
the detection of sharp dust, but its profile is not well
adapted to the detection of large and semi-transparent
blotches, which are frequent on 16mm film. As struc-
tural morphological filters performances are limited by
the great variety of blotch shapes and sizes, we have
relaxed the constraints on the blotch shape to a single
constraint on the blotch area.

Area constraint was introduced using morphological
area operators in [20]. The area opening (closing) cuts
(fills) a peak (gap or valley) until the area of the cutted
(filled) peak (valley) exceeds a given area value. Image
structures which do not satisfy the increasing criterion
of area are left unchanged. These morphological open-
ing and closing can be efficiently implemented using
Tarjan’s union find algorithm [21], with a lower compu-
tational cost than that of the corresponding structural
morphological filter.

The only free parameter of this algorithm is the area
parameter λ that should be larger than the blotch size.

This detector provides false alarms for image pat-
terns which are close to the blotch size (Figure 4).
However, as it relies on spatial information, its false
alarms are different from the false alarms provided by
the temporal detector, and should be detected as a
“conflict” between detectors at the fusion step.

Figure 4: Examples of spatial detection of blotches.
Green boxes show examples of good detections, while
red boxes show examples of false alarms.

4 Data fusion

In order to take advantage of the redundancy and com-
plementarity of the detectors, we combine their out-
puts in the framework of the evidence theory, which
easily handles the concepts of uncertainty, ignorance
and imprecision of data, and is therefore well adapted
to our aim.

4.1 Belief structures

We assume that each pixel can be explained by two mu-
tually exclusive and exhaustive hypotheses: “defect”
denoted D or “no-defect” denoted D. The frame of
discernment is denoted by Θ:

Θ =
{
D,D

}
. (2)

The set of subsets of Θ is then:

2Θ =
{
∅, {D} ,

{
D

}
,Θ

}
. (3)



Disjunctions or compound hypotheses allow the repre-
sentation of the ignorance of a source, i.e. if the source
cannot distinguish between hypotheses A and B, the
corresponding belief is assigned to the union of these
hypotheses (i.e. to the compound hypothesis A ∪ B).
A special case is the total ignorance of a source (in
the case of missing data), which can be modeled by
assigning a non null belief to Θ.

In our two-class application, the only compound hy-
pothesis is D ∪D = Θ, and represents the detector in-
ability to classify a pixel as D or D, near the boundary
between D and D classes.

The DS evidence theory allows representing both
imprecision and uncertainty through two functions:
belief (Bel) and plausibility (Pls), which are derived
from a mass function (m):{

Bel(A) =
∑

B⊆A,B 6=∅ m(B)
Pls(A) =

∑
B∩A6=∅ m(B) (4)

For any hypothesis A of 2Θ, m(A) ∈ [0, 1] and
should fulfill the following normalization constraint:{

m(∅) = 0,
ΣA∈2Θm(A) = 1 (5)

Here, each detector provides numerical output val-
ues in an interval denoted as I, and we define each
m(A) as a function from I into [0, 1] (i.e., m(A) is not
simply a number, but a function).

The definition and computation of the mass function
is not straightforward, because no general method ex-
ists. Mass functions associated with a detector are usu-
ally deduced from the empirical conditional probability
distributions of the detectors outputs, with respect to
the normalization constraint provided by Equation (5).

However, additional constraints on the mass func-
tion shape can be derived from the specificity of our
application: m(D) should be an increasing function
on I because the confidence of hypothesis D increases
with the detector output value, while m(D) should be
a decreasing function on I, because the confidence of
hypothesis D decreases as the detector output value in-
creases. The mass assigned to ignorance (m(Θ)) should
be maximum near the boundary between D and D
classes, accounting for the detector inability to distin-
guish between D and D.

For the sake of simplicity, m(D) and m(D) are mod-
eled by piecewise linear functions, each function being
determined by two parameters.

In order to respect the normalization constraint,
(Equation (5)), m(Θ) is computed as follows:

m(Θ) = 1−m(D)−m(D) (6)

Mass functions parameters have been chosen in a su-
pervised manner, using the empirical conditional prob-
ability distributions (of the detector output values con-
ditionnally to the classes) with respect to the previous
constraints. Figure 5 shows the mass functions which
have been chosen for both detectors.

Figure 5: Mass fonctions corresponding to the first
(left) and second (right)detector, function of the de-
tectors output values.

4.2 DS combination

The combination of the two detectors has been done
by applying Dempster’s combination rule [22, 23] on
the previously estimated masses:

m12 (A) =
∑

B∩C=A

m1 (B)×m2 (C) (7)

This computation is performed point-wise over I.
The intersection table is illustrated in Table 1. This

table also shows the principle of the DS fusion: some of
the mass is transfered from the combined hypotheses
to simple hypotheses.

Table 1: Intersections between the two sets of hypothe-
ses.

D D Θ
D D ∅ D

D ∅ D D

Θ D D Θ

The empty set mass m12(∅), which measures the
conflict between detectors, should deserve a special at-
tention. The conflicting mass can be reassigned to
other hypotheses, and the employed method is highly
dependent on the problem modeling.

Several solutions have been proposed for the con-
flict Management [24]. If we consider that informa-
tion sources are perfectly reliable, we can use Demp-
ster’s rule of combination (Equation (7) normalized by
(1−m(∅))), or Smets’ rule (Equation (7)) if we are not
sure that the frame of discernment is exhaustive (open
world assumption). However, if we consider that in-
formation sources are not reliable, we must apply dis-
counting if possible, or use a disjunctive rule of combi-
nation [24, 23].

In our application, we consider that the frame of dis-
cernment was correctly modeled, but that sometimes
detectors can fail (closed world assumption). For ex-
ample, the first detector can fail for large motions,
while the second detector fails for texture patterns
which are similar to the blotch patterns.

Thus, the masses should be discounted by using the
reliability of each detector. However the reliability of
the temporal and spatial detectors is not easy to esti-
mate as one global factor.



Another solution is to use a disjunctive rule of com-
bination, such as Dubois’ rule [25], where the conflict-
ing mass of two subsets B and C is assigned to their
union (compound hypothesis) B ∪ C:

mD(B∪C) = m12(B∪C)+
∑

B∩C=∅

m1(B)×m2(C) (8)

We can notice that in our model with two singleton
hypotheses, Dubois’s rule simplifies to Yager’s rule [26],
which assigns the conflicting mass to the whole set Θ
(total ignorance):

mY (Θ) = m12(Θ) + m12(∅) (9)

Yager’s rule of combination merges the total ignorance
and the conflict, which can raise some semantics prob-
lems in some applications, but this allows defining a
single index of ignorance, as long as we consider that
the conflict is due to the fact that we ignore which
detector is unreliable.

4.3 Decision rule

The decision is based on the belief and plausibility
functions (Equation (4)), which are the minimum and
the maximum of uncertainty of a given hypothesis.

The length of the belief interval ([Bel(A), P ls(A)])
can been interpreted as the imprecision about the un-
certainty value, and in our two singleton hypotheses
case it is equal to m(Θ).

The decision rule we have chosen selects the sin-
gleton hypothesis which corresponds to the maximum
of belief, but only if this maximum exceeds a given
threshold Th; otherwise, the decision is Θ (total igno-
rance): D if Bel(D) > Bel(D) and m(Θ) ≥ Sd,

D if Bel(D) > Bel(D) and m(Θ) ≥ Sd,
Θ else

(10)
Figure 6 shows two examples of decision, illustrat-

ing the segmentation of the image in “Defect”, “No-
Defect”, and “Ignorance” classes, along with the re-
lated amount of ignorance (Figure 7), which in our
case measures the “risk” that we assume by taking a
decision.

Figure 6: Decisions taken after the fusion step: D is
shown in green, D in red, and Θ in blue.

5 Experimental results

The performance assessment was performed using
the sequences “Dance” and “Art”, which have been

Figure 7: Images of ignorance after the fusion step
(m(Θ)).

scanned from archive 16mm color film. These se-
quences have 136 and 83 images, respectively, and were
scanned at the broadcast resolution (720x576). These
sequences are challenging, because motions are large
and complex, and because the areas of moving objects
and of blotches are quite similar. These sequences
have also been heavily corrupted by several types of
defects (blotches, sparkles, scratches) of various sizes
and shapes.

In order to perform quantitative evaluation, the
blotch ground truth is required. A traditional ap-
proach consists in doing manual segmentation of
blotches, or in generating artificial blotches, of ran-
dom shape, location, and grey levels but with a con-
stant grey level value over the blotch area. However,
these models are often unrealistic, as real blotches can
be semi-transparent, non-uniform, and have large area
(about 1000 pixels).

A good approximation of defects ground truth was
achieved using a method of (color) film scanning in
infrared light [27]. Infrared images provide an accurate
location and transparency of film “physical” defects
such as blotches, scratches and gelatine abrasion.

The binary defects ground truth has then been ob-
tained by thresholding infrared images (Figure 8). The
threshold value was manually set, in order to find (bi-
nary) ground truth patterns as close as possible to the
human perception of these defects. In this paper, we
chose a high sensitivity threshold, in order to empha-
size the semi-transparent blotches.

However, this method has some limitations. Defects
which have been revealed in infrared, can be “hidden”
by the image content (dark areas), and thus become
“invisible” for the defect detection algorithms.

Figure 8: Binary ground truth extracted from infrared
images.

The fusion scheme described above has been evalu-
ated using this ground truth. The parameter S of the
first detector was set to 15 in order to achieve robust-



ness to small movements, while the parameter of the
second detector was set to λ = 800 pixels, to be larger
that the blotch size. Mass functions illustrated in Fig-
ure 5 have been used, and the decision threshold Th
was set to 0.1.

Figure 9 illustrates the correct detections, the false
alarms, and the missed detections of our detector.

Figure 9: Comparison with ground truth images. Cor-
rect detections have been shown in green, false alarms
in red, and detections missed in blue.

We can see that semi-transparent blotches have
been generally correctly detected, even in areas with
pathological motion. However, some false alarms oc-
cur on the fast moving textures, showing the limitation
of our approach: if small moving patterns are detected
by the two detectors, two false alarms are merged, giv-
ing a false alarm.

Quantitative performance assessment was achieved
using classical performance indexes: recall, which is
the percentage of ground truth correctly detected, pre-
cision, which represents the percentage of correct de-
tections, and false alarm rate, that is the percentage of
false alarms among the no-blotched pixels.

If we denote by DE the binary mask of detection,
GT the binary mask of ground truth and GT its com-
plement in the image, recall, precision and false alarm
rates are defined as follows:

Recall = |DE∩GT |
|GT | × 100,

P recision = |DE∩GT |
|DE| × 100,

FArate = |DE∩GT |
|GT |

× 100.

(11)

The quantitative performance of our blotch detec-
tion method is reported in Tables 2 and 3.

Table 2: Comparative performance assessment (se-
quence “Dance”, 136 images).

Recall Precision FA rate
Fusion 22.4% 12.0% 0.56%
SDIa [3] 6.1% 11.2% 0.40%
ROD [12] 8.1% 4.8% 1.31%
Morris [19] 6.2% 5.1% 0.94%
Bornard [17] 3.4% 53.0% 0.024%

However, these results are biased by the presence
of nonimpulsive defects (scratches) which cannot be
detected by the blotch detectors, and by the defects
revealed in the infrared images that are “hidden” by
dark areas in the visible image.

Table 3: Comparative performance assessment (se-
quence “Art”, 83 images).

Recall Precision FA rate
Fusion 14.3% 12.4% 0.083%
SDIa [3] 19.1% 5.3% 0.28%
ROD [12] 20.3% 1.8% 0.91%
Morris [19] 7.6% 5.3% 0.11%
Bornard [17] 6.2% 56.1% 0.0037%

Thus a comparative evaluation has been performed,
using the same sequence of images and the same evalu-
ation method for several blotch detectors. Four blotch
detectors have been used, using 3 or 5 motion com-
pensated images, estimated with a subpixel accuracy
phase correlation method. As these methods have sev-
eral parameters, we have chosen to show only the set
of parameters which give the best results.

First, two simple detectors have been chosen for the
tests. SDIa [3] computes the thresholded minimum
of the differences between the current frame and the
previous or next motion compensated frames, and has
been used with the threshold T = 15. Second detector
is the ROD [12], that compares the first three rank or-
dered differences (between the current pixel and its six
spatio-temporal neighbours) against three thresholds.
In practice, only the first threshold is significant and
was set to T1 = 15. The second and third threshold
variation doesn’t change the good detection and the
false alarms rate, so they have been fixed to T2 = 39
and T3 = 55.

More complex, but accurate MRF detectors have
also been tested. Morris detector [19] has been tested
with the temporal smoothness bias α set to 0.005, spa-
tial smoothness bias β1 set to 0.65 and absence of dis-
continuities bias β2 set to 0.4.

As R. Bornard’s detector [17] extends Morris’s de-
tector, the same α, β1 and β2 parameters have been
used. Additional multiple discontinuities bias β3 has
been set to −0.07, while the surrounding size param-
eter, which is used in the false alarm detection and
elimination post processing, was been set to 38 pixels.
However this post processing increases the precision
of blotch detection in fast moving sequences, but also
decreases the recall, because of the elimination of de-
tections that are close to complex motion areas.

Comparative performance evaluation has been re-
ported in Tables 2 and 3. Our method compares fa-
vorably in terms of balance between the recall, preci-
sion and false alarms rate to other motion compensated
blotch detection methods, and even to the complex and
time consuming Markovian methods.

6 Conclusion

In this paper, we propose a fusion scheme for the detec-
tion of blotches in digitized archive film material. This
method uses the evidence theory framework for com-



bining two blotch detectors, taking advantage of their
redundancy, complementarity and incompleteness.

Performances in terms of correct detections and
false alarms were improved, as the decision has been
performed after the combination step, taking the con-
flict between detectors into account.

The conflict has been reported on the ignorance
mass, thus allowing the introduction of a single risk
index. Variable degrees of treatment can be achived
by thresholding this risk index in the decision step.

Further improvements will concern the automatic
computation of the mass functions, the introduction of
discounting factors in order to take into account the
detectors reliability, and the introduction of spatial in-
formation by spatial fusion.

Finally, this fusion schema can easily be extended
to new detectors, improving detection reliability.
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