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Abstract 

We propose an adaptive spatio-temporal approach for the 
detection of dirt in archive film sequences. By combining 
useful features from conventional stand-alone spatial and 
temporal approaches our method achieves better performance 
in terms of both correct dirt detection rate and false alarm 
rate. Furthermore the incorporation of confidence weighting 
offers a useful control mechanism for semi-automatic 
restoration scenarios involving manual operator intervention. 
Overall our scheme offers a practical solution to the dirt 
detection problem without additional computational 
complexity overheads. 
 

1 Introduction 

In recent years, the emergence of new multimedia and 
broadcasting outlets is dramatically improving public access 
to cultural assets of unique educational and entertainment 
value. By improving baseline picture quality and by reducing 
the perceptual impact of archive related impairments, film 
archive restoration (FAR) can meet viewers’  aesthetic 
expectations and enrich the viewing experience thereby 
facilitating access to and appreciation of historical film 
footage.  

Consequently, FAR has attracted lots of interest from 
many broadcasters and media holders while several high-
profile collaborative projects have received EU (European 
Union) funding such as AURORA (Automatic Restoration of 
Original Film and Video Archives, 1995), BRAVA 
(Broadcast Restoration of Archives by Video Analysis, 1999) 
and more recently PrestoSpace (Preservation towards Storage 
and access Standardised Practices for Audiovisual Contents in 
Europe, 2004).  

In their lifetime, films may suffer impairments due to 
environmental hazards such as humidity and dust, chemical 
instabilities, improper storage and handling practices and 
even poorly maintained projectors [6, 9, 12]. The suppression 
of these impairments has vital implications on the efficiency 
of video coding algorithms, such as MPEG (1,2,4) and AVC, 
used in many broadcast and multimedia distribution chains, 

including digital television, video on demand and Internet-
based online cinema. 

In this paper, we focus on the detection of impairments 
occasionally referred to ‘dirt’ . These are among the most 
commonly encountered artefacts and hence their successful 
detection is a priority issue in any archive restoration system 
[9]. In general, dirt is a temporally impulsive (single-frame) 
event, appearing mostly as dark or bright opaque spots of 
random size, shape and location. It is due to particles which 
are attached to the film or localised abrasions which occurred 
during storage or when the film passed through various 
transport mechanisms [6, 9]. Fig 1 gives some examples of 
dirt which are shown bounded by red rectangles.  
 

 
                 (a) Static text           (b) Low motion natural scene 

 
(c) Moderate motion natural scene    (d) Fast motion natural scene 

Figure 1: Examples of dirt 
 
Dirt detection typically involves two generic steps, namely 

the identification of inconsistency of a pixel in relation to its 
spatio-temporal neighbourhood followed by thresholding. The 
first step is conventionally implemented by a suitable 
combination of intra/inter type of filtering. In the second step 
a well-established principle is that the choice of threshold will 
influence the balance between false alarm rate and correct 
detection rate.  

According to how inconsistency is determined, we can 
categorize current dirt detection methods into three classes, 



i.e. spatial filtering, temporal filtering and spatial-temporal 
filtering.  

In spatial filtering, dirt is viewed as a spatial impulse and 
is typically detected using neighbourhood information in the 
current frame. Prominent among spatial detection methods are 
those featuring median filtering [7, 11, 13]. Nieminen et al 
[11] presented a multi-level median filter (MLF) to reduce the 
influence of outlier values while preserving edges. Their filter 
firstly calculates separate median values for horizontal, 
vertical, and two diagonal transects in a given window, and 
then the minimum and maximum of these four values are 
found. The median of the minimum, maximum, and original 
raster value in the central of the window is taken as the output 
of the filter. Hardie, and Boncelet [7], proposed LUM (lower-
upper-middle) filters, in which two parameters are utilised for 
adjustable smoothing and sharpening of images. Senel et al 
[13] proposed a topological median filter to extract edges in 
noise; however, the filtered images are of unacceptable visual 
quality in most cases. 

In temporal filtering approaches, dirt is viewed as a 
temporal impulse (single-frame incident) and hence treated by 
inter-frame processing by taking into account at least three 
consecutive frames [8, 12]. Storey’s work was perhaps the 
earliest contribution to the electronic detection and 
concealment of dirt [14].  In his hardware-based system, a 
pixel was flagged as dirt if the corresponding absolute 
differences between the current frame and each of the 
previous and next frames were high. Kokaram extended this 
idea using motion-compensated differences [8], in which the 
so-called “Spike Detection Index” (SDI) was proposed. The 
basic SDI detector was based on the identification of high 
absolute differences between the current frame and two 
compensated images, and an expanded SDI detector, SDIp, 
additionally required sign consensus of the two differences 
above. In Schallauer et al [12], a pixel is taken as dirt and 
filtered if both its absolute differences between current frame 
and the two compensated images exceed a first (higher) 
threshold while at the same time the absolute difference 
between the two compensated images is less than a second 
(lower) threshold.  

In spatio-temporal filtering, pixel inconsistency is 
determined by the examination of both spatial and temporal 
neighbourhoods. In [2], Arce applied a multi-stage order 
statistic filter approach (MOS) extending MLF to three 
consecutive frames, to  image sequence noise suppression. At 
the same time, Arce also proposed a three-frame LUM variant 
for image smoothing purposes. In [1], Alp et al introduced the 
so-called ML3D algorithm, in which two groups of windows 
are defined in three frames and their median values are 
determined. Then, the median of the two median values, 
herein which is calculated as the average of the two median 
values, is taken as the output. Nadenau, and Mitra [10], have 
used a rank order detector (ROD), in which a total of seven 
pixels from three consecutive frames (with motion 
compensation) are compared against three thresholds. Gangal 
et al extended ROD to five frames to improve accuracy in 
heavily corrupted images or occluded blotches [5]. In [8], 
Kokaram presented an extended version of ML3D, ML3Dex, 
which applied ML3D filtering to the output of the ROD 

detector. In [6], Hamid et al employed non-motion-
compensated soft morphological filtering (SMF) in three 
consecutive frames and argued that LUM and ML3Dex are 
not effective towards restore fast-moving objects in image 
sequences. However, SMF seems impractical for most 
applications because it needs sufficient representative samples 
of dirt for training to optimise the size and shape of the filters. 

Generally speaking, although motion compensation can 
potentially become an essential component of a dirt detection 
algorithm, it is well known that it does not degrade gracefully 
when motion estimation fails and may thus generate 
unpredictable results. For such a reason spatial filtering may 
be regarded as a useful tool either as a complement to motion-
compensated approaches or even as an alternative to them in 
the framework of spatio-temporal treatment that takes into 
account exclusively raw (non-motion-compensated) frame 
differences. Current algorithms do not combine the above 
concepts very efficiently. Non-motion-compensated 
approaches, cannot easily distinguish between genuine dirt 
clusters and moving objects of a similar spatial structure and 
also fail when such clusters exceed the filter size. Motion-
compensated approaches on the other hand perform poorly 
when motion cannot be accurately estimated.  

In this paper we develop an adaptive approach for dirt 
detection using a combination of spatial and temporal 
filtering. Furthermore, confidence weighting is incorporated 
offering additional flexibility in automatic and operator-
assisted restoration scenarios as it allows a variable degree of 
treatment according to preference. 

This paper is organized as follows. In Sections 2 and 3, 
conventional stand-alone methods for dirt detection with and 
without motion compensation respectively are discussed. 
Section 4 contains a description of the proposed adaptive 
method. Experimental results are given in Section 5 and 
conclusions are drawn in Section 6.  

2 Non-motion compensated dirt detection  

Spatial median filtering is a basic tool for dirt detection 
when motion compensation is unavailable. In this section, we 
will discuss three conventional methods, namely standard 
spatial median filtering (SSMF) [4], LUM [6] and MOS [2]. 
The first two approaches are exclusively spatial while the 
third is spatial-temporal.  

2.1 Definitions  

In SSMF and LUM for each pixel ),( ji  in the current 

frame nf , a window W  of radius r  is defined as 

     rjjriijifrjiW ≤−≤−= ||,||)} ,,({),,( 1111       (1) 

Hence the total number of pixels in W  is 2)12( += rN . For 

odd N , we define 2/)1(0 += NN .  

We denote },...,,{ 21 NxxxW = , and the rank-ordered set is 

given by 

)()2()1( Nxxx ≤≤≤ �   (2) 



The central pixel in the original current frame and filtered 
image are denoted as 'x  and 'y , respectively. In SSMF, we 

simply have  

)( 0
' Nxy =    (3) 

In LUM, two parameters, k  and l , are introduced for 
smoothing and sharpening, respectively. Typically it holds 
that 01 Nlk ≤≤≤ . Then, the filtered output is defined as 
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where Lx and Ux  are the corresponding outputs of the 
smoothing and sharpening processes, which are given by 
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An alternative definition of LUM filtering is given in (7), 
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In Arce [2], LUM was further applied to a 333 ××  
spatial-temporal window. We denote his LUM version as 

),(' kNLUM , where we have 27=N  and 14≤k . The 
output of the filter is given by 

),',(' )1()( +−= kNk xxxmediany   (8) 

Regarding MOS, the bi-directional variant used in our 
experiments [2] is defined on the basis of four sub-windows 
in three consecutive frames as shown in Fig 2. Firstly the 
median of each sub-window is obtained, and then the four 
median values are taken for further filtering. 

]4,1[][ ∈∀= lwmedianz ll  (9) 

]max[max lzz =    (10) 

      ]min[min lzz =    (11) 

]',,[' minmax xzzmediany =   (12) 

      
        (a)  W1               (b) W2            (c)  W3             (d)  W4  

Figure 2: Sub-windows defined in three frames for bi-
directional MOS filtering (radius = 1). 

2.2 Dirt detection and analysis 

Let ng  be the output image after filtering, i.e. 

),('),( jiyjig n = . Dirt D  is then detected as  

     �	 
 >−
=

otherwise

tjifjigif
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0
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),(  (13) 

where st  is a predefined threshold.  

 

 

 

 

Figure 3: Dirt detected from Fig 1 by SSMF with 10=st  and 

window of 55× (left)  and 77×  (right), respectively. 
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Figure 4: Dirt detected from Fig 1 by )10,5(LUM  with 

10=st  and window of 55× (left) and 77×  (right), 

respectively. 
 

With SSMF and LUM, detection performance is very 
sensitive to the size and shape of window W . A square 
window in usually adopted when we have no a priory 
information suggesting otherwise. With reference to the 
original image in Fig 1, Fig 3 and Fig 4 show detected dirt 
using SSMF and LUM using different window sizes, where 

10=st , 5=k , 10=l  and 3,2=r , respectively.  

Comparing Fig 1, Fig 3 and Fig 4, we can conclude that: 
1) SSMF performs better than LUM; 2) the false alarm rate 
especially near sharp edges or sparkle/noise is unacceptably 
high; 3) LUM has less of a smoothing effect than SSMF and 
consequently preserves better original features; 4) larger 
windows are capable of detecting larger areas of dirt. 

In Fig 5, we show the dirt detection results using MOS and 
)9,27('LUM , respectively. Owing to temporal information, 

most of the false alarms that occurred from processing Fig 
1(a) and Fig 1(b) are avoided. However, a number of false 
alarms remain for Fig 1(c), while additional ones occurred for 
Fig 1(d).  

Moreover, it seems that 'LUM  is superior to MOS in 
relation to correct dirt detection rate, but also generates more 
false alarms. The application of SSMF to fast moving 
sequences, such as Fig 1(d), causes less false alarms than 

'LUM .  In section 5, these two methods will be further 
evaluated. 
 

 

Figure 5: Dirt detected from Fig 1 by )9,27('LUM (left) and 

MOS (right) with 10=st . 

3 Motion compensated dirt detection  

Motion compensation is typically combined with 
ttemporal median filtering. In this case, at least three frames 
are needed: the current frame nf  and the two motion 

compensated frame neighbours, −nC  and +nC . We define 

−nD  and +nD  as the differences between each of these two 

images and the current frame: 

nnn fCD −= −−    (14) 

nnn fCD −= ++    (15) 

Using the above notation we subsequently consider 
established approaches such as double-threshold temporal 
median filtering (DTMF) [12], SDIp [8] and ROD [10]. 

In [12], a pixel is declared as dirt if it satisfies (16) where 

1t  and 2t  are two given thresholds with 12 tt > . 
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In [8], dirt pixels are defined as  
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                     (a) −nC       (b) nf            (c) +nC  

Figure 6: Window structure for spatial-temporal filtering in 
ROD for dirt detection.  

 
To determine dirt in ROD, three pair of pixels are 

extracted from −nC  and +nC  (see Fig 6). These six pixels are 

sorted in increasing order in a list ],...,,[ 621 rrr  where 6r  is 

maximum. Then the median of the list is extracted as 
2/)( 43 rrmed += . If medjifn >),( , we define 

]3,1[,),( 7 ∈−= − krjife knk , otherwise ),( jifre nkk −= . 

Dirt is then detected if we have any ke  greater than kt  (18).  

 

 

 

 

Figure 7: Dirt detected from low motion material (Fig 1a  and 
1b) by DTMF (top), SDIp (middle) and ROD (bottom) with 
thresholds 25,15 21 == tt  and 353 =t .  
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Fig 7 and Fig 8 shows detected dirt using the three 

methods above with 25,15 21 == tt and 353 =t . Motion 

compensation was implemented by using dense motion fields 
of sub-pixel accuracy from the well-known Black-Anandan 
optical flow algorithm [3]. From the two figures we can see 
that dirt detected from ROD has a worse false alarm rate than 
that from the other two methods. On the other hand it is more 
accurate regarding the identification of the actual shape of a 
dirt cluster. It should also be noted that most of these false 
alarms are caused by failure of motion compensation. 

DTMF and SDIp generate comparable results regarding 
correct detection and false alarms, but their performances are 
sensitive to the availability of dirt-free background. SDIp 
performs better for Fig 1(a) but worse for Fig  1(b) and Fig 
1(d). DTMF and SDIp perform similarly for Fig 1(c). 

 

 

 

 

Figure 8: Dirt detected from medium and fast motion 
sequences (Fig 1c and 1d) by DTMF (top), SDIp (middle) and 
ROD (bottom) with thresholds 25,15 21 == tt  and 353 =t .  

4 Adaptive spatial-temporal detection with 
attached confidence  

As already stated while motion-compensation contributes 
significantly accurate dirt detection, it also causes many false 
alarms when motion estimation fails. In such cases we 



propose an adaptive fallback strategy based on spatial 
filtering which is explained below.  

4.1 Adaptive spatio-temporal filtering  

For a given frame nf , let −nC , +nC  and ng  be the two 

motion compensated images and spatially filtered image, 
respectively. We define +− nn EE ,  and sE  as motion-

compensated and spatial filtering residuals as follows: 

|),(),(|),( jifjiCjiE nnn −= −−   (19) 

|),(),(|),( jifjiCjiE nnn −= ++   (20) 

|),(),(|),( jifjigjiE nns −=   (21) 

Let +− nn µµ ,  and sµ  be the mean-square values of 

+− nn EE ,  and sE , respectively. These are computed over 

localised windows. Low valued −nµ  and/or +nµ  imply 

reliable forward and/or backward motion compensation. On 
the other hand, high values of these parameters suggest 
motion estimation failure and call for a spatial filtering 
approach.  

Let ),( +−= nnn h µµµ  provide a combination of −nµ  and 

+nµ  suitable for a threshold type of decision so that, for 

example, motion-compensation is preferred if sn µµ ≤ , and 

vice-versa. Functionh  is given by 

yx

xy
yxyxh

+
= ),(),( λ   (22) 

where ]2,0(∈λ  is a parameter controlling motion estimation 
influence. The proposed adaptive spatial-temporal approach is 
summarised below: 

1) For a given frame nf , calculate +− nn EE ,  and sE  

from −nC , +nC  and ng , respectively;  

2) Partition nf , +− nn EE ,  and sE  into NN ×  blocks 

and for each block in +− nn EE ,  and sE  compute 

+− nn µµ ,  and sµ  as well as nµ ; 

3) If sn µµ ≤ , motion-compensated methods is applied 

to the corresponding block in nf  for dirt detection, 

otherwise, spatial filtering method is employed; 
4) Repeat  until all blocks have been processed.  

4.2 Confidence weighting 

The assumption that dirt is a single-frame event leads 
naturally to the idea of using inter-frame information. Let 

nn ff ,1−  and 1+nf  be three consecutive frames. We define 

1−− −= nnn ffd  and 1++ −= nnn ffd  as the raw forward and 

backward frame differences, respectively. Then, we define 

nd  as: 
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This attains its maximum value when an idealised dirt 
impulse occurs against a constant background i.e. when 

+− = nn dd . If both −nd  and +nd  are negative or positive, this 

relates respectively to dark or bright dirt pixels (particles 
adhered on negative or positive film stock). 

For each value m  in nd , dirt probability is defined as: 

�
+

−=
m

m dn dxxpmp
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where dp  is the intensity PDF (probability density function) 

of nd , which can be derived from the histogram of nd . 

Parameter 0λ  is used to normalise )(mpn  within [0,1], and 

0m  to control the removal of static background.  

It is worth noting that 00 =m  in Eq. (24) amounts to 

histogram equalisation of nd . Nevertheless, a static 

background in the three consecutive frames, may force most 
pixel values in nd  near zero therefore straightforward 

histogram equalisation is not useful in this context.  
Let γµ,  and σ  be the mean, median and variance of the 

distribution of values in nd , and let 0m  be determined by 

σγµ ++=
20m    (26) 

 
Figure 9: Confidence of dirt extracted for the images in Fig 1.  

 
Using np , a confidence image can be further defined as 

))),(((),( jidpgjiConf nnn =  where 

2ln/)1ln(*)1()( zLzg +−=  and L  is the number of gray 

levels in nf .  



Fig 9 provides a visual impression of the estimated 
confidence for the material shown in Fig 1. From Fig 9 we 
can see that the results are, on the average, intuitively correct 
with actual dirt pixels being detected with high confidence 
and hence appearing bright and vice versa. If a binary dirt 
detection mask D  has already been estimated, a confidence 
weighted mask 'D  can be further defined given as  

   �� � ≠
=

otherwise

jiDifjiConf
jiD n

0

0),(),(
),('  (27) 

Essentially 'D  is a greylevel image whose non-zero values 
correspond to dirt particles with an associated confidence 
value. For a given confidence value ]1,0[∈q , a final dirt 

mask cD can be obtained as 

�� � −≥
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otherwise

qLjiDif
jiDc 0
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It should be obvious that (27) and (28) do not affect 
correct detection rates but can be used as a mechanism for 
controlling false alarms.  

4.3 Experimental results 

In our experiments, we adaptively combine ROD and 
SSMF as described above. Fig 10 shows the results obtained 
using parameters settings same as above with 2=λ  and 

32=N . Fig 10 can be compared with detection results 
achieved using spatial filtering (Fig 3-5) and motion-based 
filtering (Fig 7-8). We can see that the adaptive scheme is 
more accurate with fewer false alarms, especially in relation 
to Figs 1(b) and 1(d). For Figs 1(a) and 1(c), there are still a 
few residual false alarms, which will be further eliminated 
using confidence weighting. 

 

Figure 10: Dirt detected by adaptive combination of ROD 
and SSMF for the image of Fig 1. 

 
This is shown in Fig 11 which was computed using the 

confidence images in Fig 9. Comparing Fig 1, Fig 10 and Fig 
11, we can confirm that adaptive dirt detection coupled with 

confidence weighting provides a reliable solution offering a 
good balance between a high correct detection rate and a low 
false alarm rate.  

It is worth noting that residual false alarms in Fig 11, have 
low confidence values associated with them and hence can be 
easily eliminated. For a given confidence level at 7.0=q , 
Fig 12 shows a binary dirt mask of dirt computed using Eq. 
(28). We can see that most false alarms have been 
successfully eliminated.  

 

 

Figure 11: Dirt detection after confidence weighting.  

 

Figure 12: Binary mask of dirt at a confidence level of 70%.  

5 Quantitative evaluations and discussion 

5.1 Criteria for quantitative evaluation 

In Hamid et al [6], a corresponding ideal (dirt-free) 
reference sequence is required in order to carry out an 
evaluation using the mean absolute error (MAE) criterion. In 
practice such a reference is unavailable. In our experiments, 
we employ manually derived ground truth of dirt for 
quantitative evaluations. 
 



Based on manually generated ground truth, a quantitative 
performance assessment was carried out using three key 
criteria namely correct detection rate cR , false alarm rate fR  

and missed detection rate mR . If gD  is a ground truth dirt 

mask and xD  is a dirt detection mask obtained from any 

given method, these criteria are defined as follows: 
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where xgy ,=  in yD , Count  is a function counting the 

non-zero elements in a mask and operator ⊗  is the logical 
AND defined as follows:  
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5.2 Results and discussions 

Broadcast resolution (720x576 pixels) sequence “Pennine 
Way”  which contains fast motion and textured background 
was used in this set of experiments. SSMF and  'LUM  were 
combined adaptively with SDIp and ROD, respectively.  

Using Eqs (29) to (31), we can determine 1,0 ≤≤ mc RR  

and 1/0 0 −≤≤ gf NNR , where 0N  and gN  are the 

number of pixels in the input image and number of dirt pixels 
in gD , respectively. If 200=gD , we have 2015≤fR  for 

the “Pennine Way”  sequence! In fact we have found a 
maximum fR  value of 4000 using SSMF, which means too 

many false alarms have been detected despite the fact that 
1=cR .  

Fig 13 shows dirt detection performance using SDIp, 
ROD, SSMF and 'LUM . The parameters for these four 
methods are 151 =t , 252 =t , 453 =t , 15=st  and 3=r .  

In Fig 13 we can see that the correct detection rate of ROD 
is higher than SDIp, but the false alarm rate is also higher (a 
maximum value of nearly 700). Regarding for spatial 
filtering, 'LUM  is better than SSMF except for the first two 
frames and it has a lower false alarm rate on average. The 
highest value of the false alarm rate (in excess of 1481) 
occurs for SSMF in frame 217 while the lowest value for 
SDIp is 0.81 occurring in frame 220. Furthermore, the correct 
rate varies from 0 (frame 217 using SDIp) to 1 (frame 106 
and 219 using ROD and SSMF/ 'LUM , respectively).  

 

         (a) Correct detection rate as a function of frame number 

 

                (b) False alarm rate as a function of frame number 

Figure 13: Dirt detection performance for “Pennine Way” 
using SDIp, ROD, SSMF and 'LUM .  
 

The unstable performance of these methods in Fig 13 
means apparently that that they are all very sensitive to image 
content even within the same sequence. We further test four 
combination schemes coupling each of SDIp and ROD with 
each of SSMF and 'LUM . For simplicity we keep parameter, 

11.1=λ  constant while the block size used is 3232× . 
Results are shown in Fig. 14 . 

Combining SSMF with ROD offers the best overall 
performance in terms of correct detection rate. However, for 
individual frames, this rate may be comparable to those 
obtained using a stand-alone approach. On the other hand, 
false alarm performance has improved significantly.  

To further reduce the false alarm rate, we use confidence 
weighting. The results are shown in Fig 15 and Fig 16. In Fig 
15 we can observe a substantial false alarm rate in frames 217 
and 219. Inspection of Fig 16 confirms a substantial 
improvement in that respect. As a result, the combination of 
SSMF with ROD seems the best overall solution for accurate 
and robust dirt detection offering simultaneously high correct 
detection rates and low false alarm rates. On the other hand, 
the combination of SSMF and SDIp generates the lowest false 
alarm rate but, at the same time, the lowest correct detection 
rate. 

 



 

(a) Correct detection rate as a function of frame number 

 

(b) False alarm rate as a function of frame number 

Figure 14: Dirt detection performance comparison for 
“Pennine Way”  using combination schemes.  

 
Figure 15: False alarm rate as a function of frame number for 
combination schemes using confidence weighting for 
“Pennine Way” . 

 
As we can see in Fig 16 confidence weighting can 

successfully reduce the false alarm rate compared to 
conventional stand-alone methods.  

There are two important design parameters in the proposed 
adaptive approach, namely block size and parameter, λ  
whose influence we investigate experimentally employing the 
best performing method (namely SSMF combined with ROD 
and using confidence weighting). The results are shown in Fig 

17, from which we can see that similar correct detection rates 
are obtained with block sizes of 16, 32, 48 and 64. Regarding 
false alarms, it seems that smaller windows cause fewer false 
alarms. A good tradeoff between correct detection and false 
alarms can be obtained using block sizes 32 and 48. On 
average, these results are quite comparable confirming that 
our method is not sensitive to the choice of block size. 

 

 
Figure 16: False alarm rate as a function of frame number for 
stand-alone schemes using confidence weighting for “Pennine 
Way” . 

 

 
(a) Correct detection rate as a function of frame number 

 

(b) False alarm rate as a function of frame number 

Figure 17: Performance comparison using different block 
sizes. 

 



Regarding parameter λ , Fig 18 shows results obtained 
using 0.2=λ , 25.1 , 9.0  and 67.0 . It seems that very high 
or very low λ  will produce more false alarms and worse 
correct detection rate while performance is not particularly 
affected by the parameter taking values in the range between 
0.67 and 1.25. 

 

 

(a) Correct detection rate as a function of frame number 

 

(b) False alarm rate as a function of frame number 

 Figure 18: Performance comparison using different values of 
parameter λ . 

6 Conclusions 

We have presented an adaptive spatio-temporal approach 
for dirt detection in archive film sequences.  The proposed 
strategy is based on a combination of SSMF and ROD and 
moreover incorporates a measure of confidence weighting 
which further improves false alarm rate performance. Overall 
our results have shown that our scheme offers a practical 
solution to the dirt detection problem and compares 
favourably with conventional approaches.   
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